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ABSTRACT

Five hydrographic (CTD) and acoustic Doppler current profiler (ADCP)
cruises were conducted in February, May, August and late October/early Novem-
ber, 1991 and February, 1992 near the Farallon Islands off of central California
in order to determine the seasonal variation of the circulation in the region. The
timing of the study was such that the onset of the 1991-1992 EIl Nifo/Southern
Osciliation was directly observed in the data obtained. A detailed hydrographic
analysis of the data showed single station temperature anomalies as great as 4 48
standard deviations warmer than the historical 40 year CalCOFI mean, and salin-
ity anomalies 5.58 standard deviations fresher during February. 1992. The max-
imum anomalies for both temperature and salinity were between 100 - 150 m
depth and within one Rossby radius (20 km) of the continental shelf break. A T-
S analysis suggested that there were no large intrusions of different water mass
types, and that the anomalies resulted primarily from altered mixing processes
due to thermocline/halocline depression. Strong positive sea level anomalies for
the west coast of North and South America occurred simultaneously at the Equa-
tor and the far north (Gulf of Alaska) then spread from both directions towards
central California. The broadening and strengthening of the Aleutian low caused
onshore transport and downwelling at the Farallones site. Oceanic processes
propagating northward may have occurred but could not be rigorously identified

with this data set.
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1. INTRODUCTION

Five research cruises were conducted over the continental shelf and slope in
the vicinity of the Farallon Islands, CA in February, May, August. late October/
early November 1991, and February 1992. The goal of the cruises was to
determine the general circulation in the region throughout the year. particularly
as it would affect the dispersal of dredged material dumped in the area. The study
collected hydrographic, current meter, meteorological, marine biological. and
Acoustic Doppler Current Profiler (ADCP) data, however this paper will analyze
only the hydrographic data from Conductivity-Temperature-Depth (CTD) casts
and the moored temperature, salinity and pressure data obtained during the
program (Ramp et al., 1992).

The timing of the study allowed us the opportunity to observe the 1991-1992
El Nino event in the collected data. With this data, we were able to examine the
mechanisms by which the propagation of El Nifio-associated anomalies occurred
in the coastal region of the central California Current System (CCS). This is by
no means a complete resolution of the El Nifio event; simply, it is an analysis of
the oceanic response to this complex, teleconnected oceanic-atmospheric
phenomenon.

A brief introduction to El Nifo, the El Niiio/Southern Oscillation (ENSO)
cycle, the CCS and a generally accepted El Nifio-manifestation theory completes
this section. After describing the data collection and calibration procedures in
secuon II, section III will present a detailed analysis of water masses, coastal sea
level, current meter data and atmospheric teleconnections. A comparison with

the 1982-1983 El Nifio event and conclusions are covered in sections IV and V.




A. BACKGROUND

Since the 1976-1977 E! Nino event, public and scientific interest in this
phenomenon has soared. Its often devastating economic and ecological impact is
well-documented (e.g., Cane, 1986; Philander, 1990; Romulo, 1991), and it
is chaotic in that no two events are p:ccisely alike (Enfield, 1989). The study of
El Nifno has evolved into essentially its own science, whese “...aficionados have
heen known to compare different events in a manner reminiscent of oenologists
discussing vintage years (Cane, 1983)”. And while much effort has been put
forth in previous works to define the “canonical El Nifio”. recent studies have
revealed that the events can evolve in all manner of variety (e.g.. Cane and
Zebiak, 1987; Carnon, et al., 1985; Clarke and VanGorder, 1992; Enfield
et al., 1987, Philander, 1990; Barnett et al., 1992). and can even occur

without here-to-for thought to be required phases (Cane, 1983).

1. Definitions and Terminology

Although historical usage prompts a definition of El Nifio in terms of
conditions off the South American coast, these changes are connected to changes
throughout the world’s atmosphere and oceans (Cane, 1983). The expanse of the
study of El Nifo has caused a convolution of the original definitions of the terms
used to chronicle these events (Aceituno, 1992). This study will use the
following definitions: “Southern Oscillation,” from Walker and Bliss (1932). s
a term used to identify an atmospheric pbenomenon characterized by a shift in
the pressure field across the tropical Pacific. “El Nifio” will refer to a “major’ El
Nifo, as defined by the Scientific Committee on Oceanic Research (SCOR.

working group 55) as occurring when sea surface temperature from at least three

of five stations between Talara (5°S) and Callao (12°S) exceeds 1 standard
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deviation for four or more consecutive months (Carne, 1983). “La Nina™ refers
to that period of time when the SO is in its normal or relaxed phase (Philander,
1990) (i.e. the compliment to El Nifio). Some authors choose to use “ENSO™ 10
refer to single E] Nifio events (e.g., Hirst, 1986), but it is more often used to
reference the entire coupled ocean-atmosphere cycle (Hirst, 1988; Graham and
White, 1988, Philander, 1983; Rasmusson and Wallace, 1983), which is
how it will be used here.

One of the most effective means by which the oceanic-atmospheric
condition is determined is through use of the Southern Oscillation Index (SOI).
which is the anomaly of pressure difference between Papeete, Tahiti. and
Darwin, Australia (e.g., Enfield, 1989). When the SOl is positive, there is high
pressure in the eastern tropical Pacific, and low pressure in the western tropical
Pacific. The opposite occurs if the SOI is negative. El Nifio (warm) events are

usually characterized by negative SOI, and vice versa.

2. The California Current System

The California Current System is spatially and seasonally varied (Tisch
et al., 1992). The principal oceanographic features of the region are: 1) wind-
driven shelf flow; 2) a north to south positive temperature and salinity gradient;
3) poleward flow extending over the slope to a distance of about 70 km from the
coast. which occasionally reaches the surface; 4) a meandering. energetic
equatorward-flowing jet in the upper 300 m that separates from the coast, usually
somewhere north of Point Reyes, yet generally stays within 100-200 km of the
coast; 5) mean southeastward geostrophic flow throughout the year; 6) enhanced

upwelling near capes; and 7) offshore transport at all depths on the north side of

capes, and onshore transport on the south side of capes (Reid et al., 1958:
Huver, 1983; Simpson, 1984b; Huyer et al., 1991; Tisch et al., 1991). The




structure of each of these features is influenced by the shape or the orography of
the coastline, or by alongshore changes in bathymetry associated with major
promontories (Bray and Greengrove, 1992).

The conditions during the summer and winter differ most notably near
the coast. Summer equatorward wind conditions cause nearshore upwelling,
while an opposite wind flow in winter forces downwelling (Rienecker and
Mooers, 1956, The water masses present in the CCS are summarized in Table
1.

Horizontal mean summer temperature and salinity profiles (Figure 1.
from Lynn et al., 1982), show the typical hydrological structure in the summer
season. The coastal effects of seasonal upwelling can be seen by the upward-
tilting isotherms, especially from the coast to 100 km offshore. The SST
increases with distance from the coast, as well as from south to north (not shown)
(Simpson, 1983; Tisch et al., 1992). The salinity has an inshore maximum that
is typically on the order of 33.6 %.. When upwelling occurs, the surface salinity
increases due to the vertical salinity profile. As distance offshore increases. a
minimum occurs 300-500 km from the coast, indicating the presence of the
Pacific Subarctic waters. Salinity then increases further offshore in the region of
the North Pacific Central waters (Simpson, 1984a). The difference during the
winter season is a downward-tilting isothermal structure (warmer) and

corresponding salinity gradient (fresher) (Huyer, 1984).

3. Near-Surface Circulation Patterns
Equatorward alongshore winds drive offshore Ekman transport,
resulting in a drop in sea level at the coast, as well as a return flow at depth of

colder, more saline and nutrient-rich water (Winant et al., 1977). The resulting

structure and variability of the density field can be used to describe many of the
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Figure 1. Thirty Year Summertime Mean for Temperature and
Salinity in the CCS (from Lynn et al., 1982).
pressure gradient is balanced by geostrophic equatorward shelf flow. Cross-shelt 4
velocity vatics on shorer spatial scales: in opposing directions at the surface and
’




bottom and incoherent between alongshore moorings separated by 25 km or more
(Bray and Greengrove, 1992).

Huyer (1983) analyzed the large-scale winds from Nelson (1977). and
calculated estimates of the resulting vertical velocities. She found maxima in

both offshore Ekman transport and vertical velocities in the region from San

TABLE 1. WATER MASS SUMMARY IN THE CCS: The table gives a
relative comparisen of water masses off the California Current
System {from Simpson, 1984a, except for NPIW which is from
Pickard and Emery, 1990).

Water Masses Temperature Salinity Oxygen Nutrients

Surface Water Masses (0-200 m)

Pacific Subarctic Low Low High High
North Pacific Central High High Low Low
Coastal Upwelled Low High Low High
Subsurface Water Masses (200-500 m)
Equatorial Pacific High High Low High
North Pacific Intermediate Low Low High

Francisco to Cape Blanco. This spatial variation of wind may contribute to
substantial convergences in shelf flow observed in the Gulf of the Farallones
region (Magnell et al., 1991).

The near-surface characteristics in the region are also influenced by
recurring and persistent eddy fields, cool (12.0°-13.5°C), salty (32.7-33.0 psu)
filaments, and high mesoscale variability (Huyer et al., 1991; Kosro et al.,
1991; Ramp et al., 1991). The presence of these features adds to the complexity
of the region. necessitating even greater care in determining the source of the

anomalies discovered during the Farallones study.




B. EL NINO THEORY

Cane (1983) describes El Niiio as the result of two-way coupling between
the atmosphere and the ocean. The resulting sum of free and forced Rossby and
equatorial Kelvin waves imparts an anomalous adiabatic oceanic response on the
time scale of a few months. This response causes a rise in sea level in the western
Pacific basin at the beginning of the El Nifio year. As the year progresses, there
is a massive collapse of the trade winds east of the date line causing an across-
basin depression of the thermocline and subsequent rise in eastern Pacific coastal
sea level.

El Nino conditions are characterized by a large-scale weakening of the
Southern Hemisphere trade wind system beyond the normal seasonal weakening
at that time, the decrease (or even cessation) of upwelling along the Peruvian and
Ecuadorian coasts, the sudden appearance of anomalously warm and low-salinity
surface water for nearly a thousand kilometers off the coast, and the southward
extension of this water far beyond its usual summer limits (Hurlburt, er al.,
1976). These wind relaxations generate equatorial Kelvin waves (Wyrtki, 1975;
Cane, 1983). The equatorial Kelvin waves impinge on the western North
American continent and become coastally trapped, spawning westward
propagating Rossby waves as the Kelvin waves propagate poleward (Clarke,
1983).

There are five basic theories for the mechanism by which warm, fresh
anomalies are transmitted by ENSO into the CCS. The first theory ascribes to the
northward advection of Equatorial waters. These warmer, saltier southern waters
would be forced northward along the coast by an as-yet-poorly-understood

mechanism, perhaps as an enhanced undercurrent.




Another theory that is based on oceanic forcing is that of thermocline/
halocline depression via a coastally-trapped internal Kelvin wave and subsequent
“leaking” offshore via mid-latitude baroclinic planetary Rossby waves. The
mechanism by which this occurs is that the downwelling Kelvin wave depresses
the main thermocline, such that the normal upwelling processes do not reach the
“cold pool” below. The results are positive temperature and negative salinity
anomaiies. Adgitnonaily, a posiuve sea level anomaly is produced by increasing
the warm upper layer thickness.

Thermocline/halocline depression can also be induced by the enhanced
onshore transport associated with a basin-scale wind stress. This wind stress
forces a strengthening and broadening of the Aleutian low to the east and south
of its normal position. The broad low causes southwesterly winds along the
central California coast which, via the Ekman forcing, causes onshore transport
and subsequent downwelling conditions everywhere. The resulting water mass
structure consists of positive temperature and negative salinity anomalies.
Additonally, the upper layer thickness is increased and water is “piled up™ at the
coast, producing a positive sea level anomaly.

The fourth theory is that of an onshore transport of Pacific Subarctic Water
(PSAW) by the same mechanism discussed in the previous paragraph (e.g..
Simpson, 1984a). The onshore transport of this water mass will usually produce
positive temperature and negative salinity anomalies, since water offshore is
warmer and fresher than onshore in the upper 500 m (see Table 1).

The final theory involves an altered northeast Pacific heat budget. Less
upwelling causes a decrease in the amount of coastal fog and low level clouds.

This in turn increases the solar insulation and surface heating. The effect is

strongest at the surface and generalty confined to the upper 100 m. The resuit is




a positive temperature anomaly, but the effect on salinity is not clear. There mayv
be enhanced evaporation, but this too could be offset by greater rainfall in certain
ENSO years.

Each of these theories will be addressed in the context of this study. We will
attempt to ascertain the mechanism by which the 1991-1992 El Niiio signal was
introduced into the Farallones region. Evidence will also be presented to refute

those theories that do not apply in this case.



II. DATA COLLECTION AND CALIBRATION

A. FARALLON ISLANDS SAMPLING PLAN

The basic sampling plan consisted of five parallel cross-shelf transections,
labeled a-e, with 20 km along-shelf separation (Figure 2) and irregularly spaced
cross-shelf spacing to better discern cross-slope structures. Coverage during the
study was extensive, with the exception of the February 1992 cruise when severe
weather prohibited the sampling of line e and a number of other individual
stations. Additionally, six current meter moorings were deployed along lines b
and d (Figure 2).

The study area encompasses a region from Pigeon Point (37° 11.1' N, 122°
23.2' W) to Point Reyes (37° 59.9'N, 123° 01.2' W), extending from the coast to
approximately 90 km offshore. This region includes part of the Gulf of the
Farallones National Marine Sanctuary. All five surveys were conducted aboard
the research vessel POINT SUR, home-ported in Moss Landing, CA.

The basic procedure for each cruise of the Farallon Islands study was as
described above. An account of the deviations from the basic plan are detailed in
Jessen et al., 1992a, 1992b, 1992¢, 1992d, and Rago et al., 1992.

B. HYDROGRAPHIC DATA (CTD) CALIBRATION

1. Calibration Procedures used during 1991 Cruises
Hydrographic data were acquired using a Neil Brown Mark III-B CTD.
A General Oceanics Rosette sampler, equipped with twelve 5-liter Niskin bottles
for in situ water sampling, was attached to the CTD and deployed during each

cruise. At the majority of stations, two water samples were taken during the CTD
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upcast for salinity calibration; one at the deepest depth of the cast and one neur

the surface. The CTD sampling rate was 32 Hz, and raw data was collected using
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Figure 2. Basic Sampling Plan for the Farallon Islands Study. The CTD

stations are indicated by asterisks, historical stations by circles,
and moorings by anchors.

a software package developed by EG&G Marine Instruments. CTD data were

acquired only on the downcast, with a winch speed of 30 m min"' to 150 m depth,

then 60 m min‘! to within 25 m of the ocean bottom.
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The standard calibration procedures were applied to the data obtained on
the four 1991 cruises, and are detailed in various individual cruise summaries
(Jessen et al., 1992a, 1992b, 1992d; and Rago et al., 1992). A summary of
the CTD calibration coefficients is given in Table 2. Due to the uniqueness of the

February, 1992 cruise, the procedures used during that study are detailed below.

2. Calibration Procedures used in the February 1992 Cruise

In February, 1992, the hydrographic data was initially acquired using an
EG&G Mark V CTD. Following the completion of station 33, the Mark V CTD
began showing a large shift in its readings and was replaced by a Neil Brown
Mark III-B CTD which was used for the remainder of cruise. The Mark V CTD
sampling rate was 16 Hz, while that of the Mark III-B CTD was 32 HZ.

The temperature, conductivity, and pressure sensors on the Mark V CTD
were calibrated prior to the cruise. The pressure calibration was conducted at
twenty approximately equally-spaced pressures from O to 6000 dbar. using a
Chandler Engineering deadweight tester as a standard. A regression was then
performed fitting the CTD pressures to the standard. The result yielded a linear
fit with a slope of 1.00016. The CTD pressure offset at the beginning of each cast
was used as the intercept.

The temperature calibration was achieved using a model 162CE
Rosemount Platinum Resistance Temperature Standard (PRTS) in conjunction
with an EG&G Automatic Temperature Bridge (Model ATB-1250). The
standard (PRTS) sensor was calibrated using a triple point cell. The regression
procedure is again detailed in the individual cruise reports, and the coefficients

are listed in Table 2.
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The conductivity calibration was performed using an EG&G

Conductivity/Salinity Adapter (model CSA-1250) in conjunction with the

REGRESSION COEFFICIENTS:
The slope and intercept calculated through regression analysis
done on the calibration of the Mark I1I-B and Mark V CTDs, as
described in sections II.B.1 and I1.B.2, are summarized in this

TABLE 2.

CTD CALIBRATION

table.
CRUISE/ PRESSURE TEMPERATURE TEMPERATURE CONDUCTIVITY | CONDUCTIVITY
SENSOR SLOPE SLOPE INTERCEPT SLOPE INTERCEPT
February 91 N
. - . 0 9982 .
Mark 1B | ©99919 | 0999441 | 0.00022 0.998 0.17707
May 91 R .
Mark [0 | 100016 | 0.999898 0.003823 0.9982 0.17707
August 91
3 2 :
Mark 1L | 0999610 |  0.999818 0.000131 0.998 0.17707
Oct-Nov 91 ‘
: 3 : : 9982 0.1770
Mark TL.p | 000663 | 0999818 0.00013] 0.998 17707
February 92
3 . 3 -0. 3 0003 ) 53
Mark 1ILp | 1000376 | 0.999738 0.00067 1000371 | 0.11695
Febraary 92 1 ) 007354 | 0.99996189 | -3.91438 | 0.9999265 | 0.021466
Mark V

(PRTS) and the ATB-1250. Constant conductivity baths were used to compare
the standard and sample sensor conductivities at five different conductivity
levels. Regression analysis was used to compare the sample cell conductivities

with the standard sensor conductivities.

C. HISTORICAL CalCOFI DATA COLLECTION

Observational physical oceanography of the California Current System
(CCS) using hydrographic surveys has its modern origins in the California

Cooperative Fisheries (CalCOFI) program, which began in 1937 (Bray and
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Greengrove, 1992). The CalCOFI data provides a broad overview of circulation
along the west coast of the United States. Analyses of CalCOFI data, including
the water mass structure of the CCS, were conducted by Tibby (1941), Sverdrup
and Fleming (1941), Reid et al. (1958), Roden (1971), Reid (1972),
Churgin and Halminski (1974), Reid and Arthur (1974) and Lynn and
Simpson (1987).

Individuai CalCOFI stations were obtained from Dr. Norman F. Hall. the
National Oceanographic Data Center (NODC), Southwest Liaison Officer, in La
Jolla, CA, to provide a historical comparison with the Farallones data. The
individual stations are actually the compilation of many casts, both part of the
CalCOFI program and others collected and archived in the NODC data base. The
stations were searched using an algorithm which extracted any cast that was
within 4 nm (7.4 km) of the historical position of each CalCOFI station. The
stations were selected from Lines 60 (stations 60.55 and 60.60) and 63 (stations
63.52,63.55 and 63.60) for their spatial coverage within the Farallones study area
(Figure 2, Table 3). Due to the nature of the collection procedure, the data set will

hereafter be referred to as the ‘‘historical” stations or data.

TABLE 3. CALCOFI SUMMARY: This table summarizes the latitude.
longitude, record length, and period covered by each CalCOFI

station.
CalCOFI A A L itud R d Length .

Station number | Latimde N | w2 | of crutees) Period covered
60.55 37.784 123.255 S0 | 08/07/51-10/19/84
60.60 37.619 123.612 110 02/15/5010/19/84
63.52 317.315 122.607 75 08/02/51-10/21/84
63.55 37.215 122.835 66 08/02/51-10/21/84
63.60 37.046 123.198 62 07/19/57-10/21/84

14
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D. SEA LEVEL DATA COLLECTION

Sea level anomalies are commonly used to investigate propagating wave and
along- and across-shore transport theories (Cane, 1983; Clarke and
VanGorder, 1992; Cornejo-Rodriguez and Enfield, 1987; Hurlburt, 1976:
Huyer et al., 1978; Wyrtki, 1975; and Simpson, 1984a, 1984b). Tinie series
of sea level anomaly were collected along the west coast from Callao, Peru to the
Gulf of Alaska to investigate the coastal effects of the 1991-1992 El Nifo event.
The period covered by the sca level data runs from January 1991 to March 1992

and includes the entire scope of the Farallon Islands study.

E. MOORED DATA

Data obtained from six mooring sites, A-F, will be used to describe the
temporal changes which occurred between the Farallones cruises. The time series
from these sites will provide the means by which we will reconstruct the events
associated with the onset of the 1991-1992 El Nifio. Moorings A through D are
along line b, and E and F are along line d, each containing a variety of sensors
stationed at a number of depths (Figure 2). The sensors for moorings B and F are
presented in order to show the spatial depth and type of data available from the
moorings (Table 4). The calibration procedure for the moored sensors is detailed

in Noble, et al. (1992).

F. SATELLITE AVHRR DATA
Cloud-free satellite Advanced Very High Resolution Radiometer (AVHRR)

imagery was available for four of the five surveys. Persistent low clouds and fog
precluded obtaining imagery for the August 1991 cruise. The raw AVHRR datz

was obtained in digital form from Ocean Imaging, 5an Diego, CA and processed
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at the Naval Postgraduate School IDEA Laboratory using the University of

Miami DSP software.

TABLE 4. DATA TYPE AND AVAILABLILITY FOR FARALLON
ISLANDS MOORINGS B AND F: This table is an example of
two of the six current meter moorings from the Farallones study.
The table shows the mooring designator, the start and stop times
of the data, the depth of sensor package, and the sensors at those
depths. /C = Current meter, T = Sea Temperature, S = Salinity, P

= Pressure)

site sm’m’ s(':n‘l’o’;'v")" Sensor Depth Data Type
B 07/04/91 09/23/91 10 C.T
B 03/09/91 02/08/92 150 CT
B 03/09/91 02/08/92 260 CTS
B 03/09/91 02/08/92 390 CTS
F 03/11M91 02/10/92 75 CT
F 03/12191 02/13/92 180/223 C.TS.P
F 03/11/91 02/13/92 280/324 C.T.S.pP
F 03/11/91 02/13/92 417/456 C.TS.P

Data obtained from the AVHRR (or AVHRR/2) instruments carried on the
TIROS-N/NOAA series of polar orbiting satellites were used to obtain SST
images for the study region. All AVHRR (NOAA 10) instruments measure
emitted radiation in four wavelength bands, visible (0.6-0.7 um). near infrared
(0.7-1.1 um), and thermal infrared (3.5-3.9 pum and 10.5-11.5 um). The AVHRR/
2 (NOAA 11) sensor has an additional thermal infrared band (11.5-12.5 um)
which enables daytime estimation of the sea surface ter~perature by correcting
for atmospheric contamination (Bernstein 1982; McClain 1985). Sea surface

temperature estimates were done for all the AVHRR/2 data using channels 4 and
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5 and the nighttime AVHRR data using channels 3 and 4. AVHRR daytime data
were left as black body brightness temperatures from channel 4 and were
uncorrected for atmospheric contamination. The satellite data were first
calibrated and navigated to Earth coordinates and then temperature was
computed pixel by pixel. Each image was then co-registered to an identical
coordinate map of the study region. Additional details can be found on the

processing in Cornillon et al. (1989) and on the data extent in Tracy (1990).
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III. RESULTS

A. WATER MASS ANALYSIS

The first operation was to compare the Farallones and historical data to
determine the strength and character of the El Nifio event. Plots of temperature
versus salinity (T-S) at all stations were then constructed in order to determine
the water masses present in this region of the CCS at the different stages of the
study. From those plots, critical density anomaly (Y,) surfaces were discerned, on
which depth and spiciness (7t) were of interest. The values of Yg were calculated
using the procedures outlined in Unesco (1991). Spiciness (Munk, 1981:
Flament, 1986) is a measure of both temperature and salinity, and is useful for
identifying water masses. Spiciness is useful for the description of interleaving at
the boundary between different water types on different Yg surfaces. Waters
which are warm and salty have higher 7 values, while those which are cool and

fresh have lower & values.

1. Anomaly plots

Anomalies of temperature and salinity were calculated using two
averaging methods; one to determine the collective anomaly in a particular sub-
region, say the southern shelf of the study area, the other to produce vertical
sections of anomalies along Farallones lines a and d (e.g., Rienecker and
Mooers, 1985, their Figure 6). The first type required the averaging of multiple
Farallones CTD stations which were geographically representative of the
historical stations. The second involved interpolation of historical data to match

a line of CTD stations.
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a. Single Station Anomalies .
R
When comparing fine-scale gridded fields, such as the Farallon » '
Islands study to individual historical stations, horizontal averaging of the x
observational data must be conducted to match the course spatial structure of the
historical fields. As a first step, data from several Farallones stations near the »
historical stations were averaged together for comparison (Table 5). The
historical stations were 20 year seasonal averages, with each season using data
from 3 months around each cruise. Averaging the Farallones stations spatially ,
reduces mesoscale “noise’” and increases confidence in the results. In the analysis
TABLE S. FARALLON ISLANDS STATIONS GROUPED
RELATIVE TO HISTORICAL STATIONS: This table
summarizes the Farallones stations that were averaged to ’
compare to the historical stations, listed by cruise. (See Figure 2
for spatial orientation.)
Hiss::iri:al February 1991 May 1991 August 1991 Nov(::::::r{% 1 February 1992
) o
60.55 23-26,35,37, | 23-26, 35- 23-26, 35- 23-26, 35- 24-26, 35-
i 38, 43-46 38, 43-46 38, 43-46 38, 43-46 38
27-34,47, 27-34,47- 27-34,47- 27-29. 32-
60.60 27-34,47, 48 48 49 49 34
63.52 3-5,16-19 3-5,16-19 3-5,16-19 3-5,16-19 3-5,16-19 '
63.55 6-8, 13-15 6-8, 13-15 6-8, 13-15 6-8.13-15 6-8.13-15
63.60 9-12 9-12 9-12 9-12 9,11, 12

that follows, anomalies are expressed both as magnitudes and as multiples of 1
standard deviation (G) fromn the historical mean, calculated at each depth (e.g..
“0.7767/1.040” is interpreted as “0.7767 positive units from the historical mean

which is equal to 1.04 standard deviations”).
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(1) February 1991. The overall characteristics of this cruise were

seasonal surface cooling, a warm signature at 100 m depth off of the shelf, and

Sungle Station Temperalure Anowialics lut Rebsuary 1991
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Figure 3. Single Stations Anomalies for February, 1991. This is a
composite plot of the temperature (top) and salinity anomalies
over the northern and southern shelf and slope regions in
February, 1991.

high variability in the salinity signature below the mixed layer depth (Figure 3,

above). All anomalies which exceeded 1 ¢ were warm and fresh. The winds
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during this period were moderately upwelling favorable and consistent with the .
. B
seasonal average (Figure 4). » il
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Figure 4. Wind stress from NOAA buoys during 1991. The winds in the
vicinity of the Gulf of the Farallones during the four 1991 study
cruises (from Ramp et al., 1992).

The few temperature anomalies which exceeded 1 G for thic cruise ’
were positive and existed at 100 m or below. Stations over the slope (Figure 2)
had positive temperature anomalies which exceeded 1 ¢ at 100 m of 0.7767/
»
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1.046. 0.6719/1.30, and 0.5392/1.040 respectively. Additionally, the southern
outer slope was anomalously warm at 150 m (0.3552/1.360).

Greater variability was found in the salinity signature. The southern
outer slope had anomalies exceeding 1 © at all depths 100 m and below, with the
greatest anomaly at 300 m (-0.0581/1.536). The southern inner slope had large
anomalies at 150 m and at 200 m where the maximum anomaly occurred (-
0.0667/1.860). The northemn outer slope had an anomalous salinity signature
from 100-200 m with a maximum anomaly at 150 m (-0.1977/2.57G), the data
near the northern inner slope had anomalies exceeding 1 G at only the 100 m
depth (-0.1564/2.860).

(2) May 1991. Stong upwelling favorable winds dominated this
cruise (Figure 4), and nearly all of the temperature anomalies during May 1991
were negative (Figure 5). The southern outer slope was cold at all depths, with a
maximu_m anomaly of -0.5797/3.05¢ at 100 m. The maximum anomaly at the
southern inner slope was at S0 m (-0.6119/1.18G), and the station’s temperature
anomaly also exceeded 1 ¢ at 100 m. The southern shelf and the northern outer
and inner slopes had maximum anomalies at 10 m (-1.6976/1.610, -2.0177/
1.590 and -1.6955/1.120, respectively). Additionally, the northern outer slope
anomalies exceeded 1 ¢ at 50 and 100 m, and the northern inner slope
temperature anomaly exceeded 1 G at 100 m.

The only salinity anomalies exceeding 1 G were on the southem
outer slope (150 m, 0.0530/1.150) and the northern outer slope (10 m, 0.3440/
1.080). All of the salinity anomalies were weakly positive, indicating that the
upwelling observed during this cruise was only slightly stronger than the

seasonal climatology.
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Figure S. Single Station Anomalies for May, 1991. Same as Figure 3.
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(3) August 1991. The calm meteorological conditions during this .
. . . . . . »;
period (Figure 4) contributed greatly to the near surface warming found in this , -~
data set (Figure 6). This cruise was dominated by a warm temperature signature N
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Figure 6. Single Station Anomalies for August, 1991. Same as Figure 3. >
throughout ihe region and at all depths, save the 50 m depth of the southern inner
slope. The maximum anomalies for the southern outer and inner slopes and shelf
»

2




were 50 m, 1.3843/2.250, 150 m, 0.8767/2.586 and 50 m, 1.3774/2.030.
respectively. The northern outer and inner slopes had their maximum anomalies
at 150 m (0.5907/2.426) and 100 m (0.8058/1.530), respectively.

The southern outer slope had negative salinity anomalies exceeding
1 0 at 100, 150 and 300 m depth with the maximum anomaly at 100 m (-0.1078/
2.170). The southern shelf was also anomalously fresh with negative salinity
anomalies exceeding 1 G at the 10 and 50 m depths, with 50 m having the

maximum anomalous value (-0.2446/2.030).

4) October/November 1991. The hydrographic anomalies
typifying this survey were generally unremarkable, with the exception of the
northern outer slope whose temperature characteristics were dominated by an
offshore warm eddy (Figure 7). This region was anomalously cool at 10 m (-
1.2629/1.390), and conversely warm below, exceeding 1 © at all depths with the
maximum temperature anomaly occurring at 150 m (0.9529/2.82¢). The 10 m
mark for the southern outer slope was also exceedingly cold at -1.0622/1.13G.

The salinity anomalies had no discernible pattern. The southern outer
slope exceeded 1 © at 100 m (-0.1931/1.400), the southern inner slope at 150 m
(-0.0786/1.440) and 200 m (-0.0545/1.43G) and the northern inner slope at 50 m
and 100 m (-0.1773/1.660 and -0.1123/1.830, respectively). Like the February
1991 cruise, there were moderate upwelling favorable winds present at this time
(Figure 4). While the Farallones data showed upwelling in the temperature and
salinity regimes of the surface layer, the T-S properties were not strongly

anomalous and therefore reflect typical seasonal conditions.

(5) February 1992. The warm temperature anomaly exceeded 1 ©

at all depths at every station, with the exception of the northern inner slope.
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Similarly, salinity was anomalously fresh, exceeding 1 G at all stations below the .
. . . &)
mixed layer depth (100 m), with the exception of the 300 m depth of the southern y 7
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Figure 8. Single Station Anomalies for February, 1992. Same as Figuie 3.
inner slope and northern outer slope (Figure 8, above). The southern outer slope !

had maximum anomalies which exceeded 1 O in temperature and salinity at 150
m depth (0.9158/3.516 and -0.2302/2.990, respectively). The southem inner
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slope was most anomalous in temperature at 100 m (1.4098/2.89G), and in
salinity at 200 m (-0.1595/4.46G). The temperature anomaly maximums for the
southern shelf were at 10 and 50 m depth (1.2921/1.486 and 1.4012/1.570.
respectively). The maximum temperature anomaly at the northern outer slope
was at 200 m (0.8085/2.770) and the maximum salinity anomaly was at 150 m (-
0.2598/3.380). The only anomalies which exceeded 1 G at the northern inner
slope for this cruise were at 100 m depth and were 1.8086/4.43G for temperature
and -0.3052/5.58¢ for salinity.

We interpret the warm, fresh anomalies which were maximum at
mid-depth and persisted throughout the region as the primary signature of the
1991-1992 ENSO event. There were three major synoptic systems consisting of
strong southwesterly winds that passed through the region at the time of the
observations, causing intense periods of downwelling and onshore transport.
However, the anomalies found in the region may also have been caused by
oceanic phenomenon.

The maximum anomalies of temperature and salinity and the general
features for each cruise are summarized below (Table 6). The dominant processes

and their suspected effects will be discussed in detail later.

b. Vertical Sections
Three-month seasonal averages, centered around February, May,
August, and November, were extracted from the historical data for comparison
with the Farallones cruises. Once the seasonal data files were extracted, the
individual historical data were interpolated to discrete depths of 10, 20, 30, 40,
50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, and 300 m. This step

was required because the historical data is largely comprised of bottle casts
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activated at discrete depths: the interpolation was done to correct for the sampling .
&
TABLE 6. SUMMARY OF MAXIMUM STATION ANOMALIES. This » ’
table indicates the maximum temperature and salinity anomalies
for each depth. The format for the anomaly and its associated 2 4
standard deviation follow that in the text. The summary and list
of features at the bottom of the table applies to the entire cruise.
not just the maximum anomalies. ,
Maximum Temperature Anomalies
Depth February 1991 May August October/November February 1992
oM | -07082082 | L9 | 206077160 | -1.262911.39 | 1.3518/1.64 ’
soM | 03072078 | L7300 | 138437225 | 099880144 | 15552185
1woM | os7iomnag | 02727 | ossasnsa | 07254172 | 1.8086/4.43 ,
150M | o3ssz136 | U232 |osrerzse | 09520282 | 09158351
-().2908/
200M | 0.2695/0.95 0.6540/2.33 0.8576/2.53 0.8085/2.77
1.45 » o
-(0.3558/
300M 0.1587/0.58 137 0.4355/1.41 0.6892/2.26 0.6992/2.55

Maximum Salinity Anomalies
10M | 0.4003/0.61 | 0.3440/1.08 | -0.2318/1.52 | -0.0759/0.58 | 0.4453/0.68 »
50M | 0.0696/0.38 | 0.1963/0.72 | -0.2446/2.03 | -0.1773/1.66 | -0.1027/().54
100 M | -0.1564/2.86 | 0.1013/0.77 | -0.1078/2.17 | -0.1123/1.83 | -0.3052/5.58
150 M | -0.1977/2.57 | 0.0530/1.15 | -0.0994/1.93 | -0.0786/1.44 | -0.2598/3.3§

»

200M | -0.0667/1.86 | 0.0608/0.95 | -0.0529/0.80 | -0.0545/1.43 | -0.1595/4.46

300 M | -0.0581/1.53 | 0.0146/0.20 | -0.0493/1.53 | 0.0137/0.21 -0.0518/1.36

Slightly Strongly Strongly
Summary warm, fresh | warm, salty Nearnormal | Near normal warm, fresh »
. Warm eddy at T
No signifi- | Sfc trapped Depressed

Features cant features | cold water Strong CUC norstl}:) ro):ter Thermocline

»

29




CITOT.

The use of ﬁistorical data in the vertical cross-section analysis of
anomalies necessitated computing the historically-accurate position of euach
station. Since each historical station is actually the compilation of many casts. the
position of each cast was recorded and later averaged. The resulting average
latitude and longitude is the central position of the historical station, and is the
position used to calculate the vertical cross sections. Historical stations 63.52.
63.55, and 63.60 run parallel to Farallones line a with an along-shore separation
of 9.67 km, and historical stations 60.55‘and 60.60 run along line d with an along-
shore separation ot 5.54 km. (Figure 2). Only those Farallones stations located
between the historical stations were used to calculate the sections of anomalies.
which were stations 3-10 from line a and 31-34 from line d for the 1991 cruises.
The February, 1992 cruise used stations 3-9 and 32-34 from lines « and d.
respectively. Hereafter, lines a and d will be referred to as the southern and
northern sections, respectively.

Once the historical positions were determined, the relative distance
to each Farallones station was computed and the historical values of temperature
and salinity were linearly interpolated to the positions of the Farallones CTD
casts. These interpolated historical averages were then subtracted from the CTD
data to determine the vertical structure of anomalies. The linear interpolation is
justified since we assume that the 20 year temporal averaging has smoothed out
any mesoscale vafiability that may have been present. Stations 3, 6, 7, 31, and 34
were close to the historical stations and the anomalies there have high
confidence. Stations farther away were compared with the interpolated data and

have lower confidence. Overall, the patterns make sense and do not show any

trends which might be due to the linear interpolation.
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(1) February 1991. Conditions during this cruise were generally
warm and fresh, especially below the mixed layer, as can be seen in both the
southern and northern sections (Figure 9). There were three prominent features
in the southern section: 1) a cold, salty core on the shelf break (station 4) centered
around 45 m, whose temperature was highly anomalous (more than 2G), and
whose salinity, while anomalous, was not as large; 2) a cold, fresh tongue
intruding from offshore, centered at about 60 m depth; and 3) a much broader
warm, fresh feature whose core was on the inner slope (station 8), centered at 110
m depth. The salinity structure below the mixed layer in the southern section was
anomalously fresh, exceeding 1 ¢ from about 90 m to 300 m.

In the northern section, there was a fresh core at mid-slope (station
33) centered around 125 m depth that was more than 3G below the mean seasonal
average and was probably an extension of the warm, fresh core observed in the
same area in the southern section of this survey. The temperature signature is less

well defined, but is still anomalously warm in this rorthern core.

(2) May 1991. The entire region, with minor exception, was colder
and generally saltier than the historical mean, though rarely by more than one
standard deviation (Figure 10). There was a weakly negative salinity water mass
in the mid-slope region (stations 8 and 9) of the southern section centered around
45 m depth. Additionally, the southern section had a narrow warm wedge in the
same mid-slope region, from the surface to 50 m. The two features do not appear
to be connected, however.

The northern section was similar in structure within the upper and
mixed layers. It did have a highly anomalous (exceeding 20) cold, salty surface
feature alor.g the mid-slope region (station 32). The surface rapping of this cold,

salty mass, in concert with satellite imagery (Figure 11), suggests that the water
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-
X
*
is being advected south from an upwelling center to the north of the survey ‘
&,
region. Below the mixed layer, this section followed the normal seasonal )
climatology. e
RECITI | e ,
)
1 )
q ’ ®
1 )
|
p Figure 11.  Satellite Imagery from 15 May, 1991. The image shows the »
cold, salty surface-trapped water mass (dark shading) advected
south from the upwelling center to the north of Point Reyes.
(3) August 1991. The vertical sections for this cruise indicate
¢ simple surface heating in the absence of any strong vertical mixing (Figure 12)
The temperature structure in this section at the shelf break (station 5) centered at
40 m was greater than 40, though there was no accompanying salinity anomaly.
)
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The feature on the inner slope (station 7) had a core structure in temperature and
salinity but did not exceed 1 O in either regime.

The 0.9 temperature contour reflects an entire region along the inner
and outer southern slopes that were at least 26 warmer than the mean seasonal
climatology. The -0.08 salinity anomaly contour along the inner slope centered
at 175 m depth exceeded 1 ©. Separate plots of temperature and salinity (not
shown) indicated a dowaward bending of the isopycnals here. There was also
enhanced flow of the warm, salty California Undercurrent along the inner slope.
The combination of the two mechanisms was sufficient to enhance the warm
temperature anomaly and weaken the fresh salinity anomaly.

Surface heating in the northern section can be seen in the horizontal
stratification of the temperature anomalies. The entire northern section was
anomalously warm. The section also contained a salinity core centered at 50 m
on the outer slope (station 31) which was over 2.56 fresher than the historical
mean. Historical data were not available below 100 m for the summer season on
the inner slope (historical station 60.55), and therefore precluded evaluation of

the lower water column.

(4)  October/November 1991. The temperature and salinity
anomalies for both the southern and northern sections of this cruise (Figure 13)
reflected the normal seasonal variability of the region. There were no anomalies
which exceeded 1 G in any domain, however the general trend was for cooler,
fresher conditions in the mixed layer. As with the August cruise, historical data
were not available for the fall season on the inner slope, precluding evaluation of

the water column below 100 m in the northern section.
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(5) February 1992. The general characteristics of this survey were
a strong warm temperature signature throughout the southern section and most of
the northern section, accompanied by an equally strong salinity signature below
60-70 m depth in both sections (Figure 14). The structure on the inner slope
(station 7) of the southern section showed a temperature core centered at 70 m
that was more than 30 greater than climatology, as was the thermal core on the
outer slope (station 9). The salinity structure was highly stratified in the upper 70
m. The anomalies did not exceed 1 standard deviation until below 60 m on the
outer slope and 70 m on the inner slope. The salinity structure centered at 150 m
on the inner slope (station 7) was more than 40 fresher than climatology. The
temperature anomaly bounded by the 0.9 contour and the inner slope (175-260 m
at station 7) exceeded 2G above the climatological mean.

The warm anomalies seen throughout the southem section were
more closely trapped to the inner slope region in the northern section. The
positive temperature signature on the outer slope did not exceed 1 G until 200 m
and below. The inner and mid-slope stations however were exceedingly warm
from 50 m and 100 m and below, respectively. There was an additional small core
of warm, salty water centered at mid-slope around 45 m depth that was
remarkable not only due to its positive temperature, but also that it was
surrounded by fresh anomalies. This feature may be an extension from a warm,
salty front located further offshore (Figure 15).

The structure of the northern section basically agrees with the
southern. The salinity core in the northern section at mid-slope (station 32)
centered at 100 m was nearly 30 fresher than climatology. In the lower layer, the
mid- and inner slope (stations 33 and 34) temperatures had positive anomalies

exceeding 1 ©.
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Figure 15.  Satellite Imagery from 4 February, 1992. The image shows the
frontal boundary along the outer slope. A warm, salty meander
from this front is thought to cause the structure in the upper layer
of section d (Figure 14).
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2. Temperature-Salinity analysis

Each cruise was examined separately so that unique synoptic features
could be identified, and the water mass types determined, using historical
Temperature-Salinity (T-S) curves as a guide (Tibby, 1941; Reid, 1965; Huver
etal., 1991; Tisch et al., 1992). Farallones line b (station 11 on the outer slope
to station 20 on the shelf, Figures 2 and 16) was chosen to study the temporal
evolution of the T-S relationship because it was representative of each survey
period. Most of the major features in the region span this line and coincidently it
was the only complete line for all five cruises. T-S properties below 1000 m were
relatively constant. so only the upper water column is shown.

In this region of the Farallones, two surfaces are known to be of interest
for the tracing of particular water masses; these are 26.4 Yg and 26.8 Yg. The 26 4
Y surface is below the halocline and is generally accepted as the surface where
the core of the California Undercurrent (CUC) lies (Huver et al., 1991). The
26.8 Yg surface is near the core of the North Pacific Intermediate water (NPIW)
(Reid, 1965; Huver et al., 1991). A typical regional T-S curve will indicate a
large warm, salty inflection around the 26.4 surface indicating the presence of the
CUC (Figure 16). A cold, fresh inflection around the 26.8 surface will show the
NPIW; there is also the occasional intrusion of Pacific Subarctic water (PSAW)
in the upper 200 m which will appear as a cold, fresh “tail” in the upper portion
of the T-S curve.

Below the 25.6 Yy surface, the February 1991 T-S curve closely
approximates those found by others in the region (e.g., Churgin and Halminski,
1974; Hickey, 1979). Above this surface, however, the curve deviates
markedly, especially in the salinity field. The cold fresh “tail” is apparent in the

February 1991 curve, showing the offshore intrusion of PSAW. The inflection
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around the 26.4 g surface was also less pronounced in this cruise than normal.
perhaps indicative of a weak CUC.

The T-S relationship for May shows a general shift toward cool, fresh
conditions. The inflection around the 26.4 Yy surface was again anomalously
weak during this period suggesting a still weak undercurrent. The near surface
waters show the influence of two different mechanisms: upwelling in the
nearshore region (cold, salty) and the intrusion of PSAW (cold, fresh) in the
offshore staiions (stations 11 and 12).

The August T-S relationship had the same general shape in the mean as
the July-August 1991 curve found by Huyer et al., 1991 (Figure 16). The curve
indicates slightly warmer temperatures down to about the 26.0 Yg surface and
slightly saltier conditions throughout the upper 800 m: This agrees with the
climatological mean gradient which has warmer, saltier water to the south. Of
notable exception was the outer-most station (station 11): the cool. fresh structure
along the 26.4 g surface indicates a possible front between this and the other
stations in the line. The other stations show a strong inflection toward the
equatorial side, indicating a strong undercurrent, but station 11 was apparently
not in the undercurrent (Huyer et al., 1991; Tibby, 1941). Lines c and d (not
shown) contain a cold, fresh “tail” in the near-surface region in the outermost
stations suggesting the onshore intrusion of PSAW. The mixed layer reached its
seasonal maximum temperature due to surface heating in the absence of any
substantial meteorological activity (Figure 4). The interleaving structure around
26.8 g indicates the presence of deep ocean fronts and eddies.

The October/November T-S relationship was very close to the typical
curve found in the region, with a few notable 2xceptions. The inflection at the

26.4 g surface was more pronounced in this curve than those normally observed
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(Hickey, 1979: Huver et al., 1991). Like August, there are also many intrusive
features around the 26.7 and 26.8 yg surfaces that will be discussed in the section
that follows.

The general shape of the curve during February 1992 was the same as the
October/November curve, indicating the absence of any new water masses
intruding into the region. The surface layer (< 25.2 ¥y) shows the cold. fresh
a7 ostations 11 and 12 (outermost stations). There was also a cold, fresh
inflection in station 11 around the 25.5 ¥g surface (approximately 100 m), both
possibly due to a shallow oftshore eddy (Figure 15). The structure around the
264 g surface was quite varied. Stations 11 and 15 are both cooler and fresher
than the stations between. indicating that the warm, salty signature typical of the
CUC was contained Between 35 and 75 km offshore. There also appears to be a
cold. fresh inflection around the 26.8 ¥g surface indicative of a small-scale NPIW
intrusion.

The effects of upwelling and downwelling can clearly be seen through
the inter-cruise analysis of a single station’s T-S relationship. Here we have
chosen station 15, near the shelf break, from each cruise (Figure 17), and have
plotted them with the depihs labeled. The effects of upwelling were very apparent
in May especially when compared to February, 1991. The May curve was shifted
roughly orthogonally to the density lines toward larger density values with each
corresponding depth shifted in like manner. This indicates upwelling, as deeper,
more dense waters are brought toward the surface.

Conversely, downwelling was readily apparent in February 1992. These
depths during February 1992 were shifted up and to the left when compared to
the October/November plot, indicating that less dense water was being forced

deeper into the water column by therinociine depression. Additionally, when
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comparmg  both February plots, the 1992 curve was warmer and freshe
throughout and the shift in depths was again indicative of stronger thermochuge/

salochine depresston during February, 1992,

Foltazs. ani ag. 199!

Gotober/Noverbes and Febuwas 1992
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Figure 17.  T-S Relationship for Station 15. This is a composite plot ot
station 15 from four cruises; February and May 1991 are
compared in the lett panel, November 1991 and February 19921
the right panel. The migration of the depths of the water particles
is indicative of upwelling (May) and downwelling (February
1992).

3. Spiciness and depth along density (Yg) surfaces

Froni our T-S analysis it was apparent that the 26.4 and 26.8 Yy surfaces
were of greatest interest. In the Farallones region, isopycnal surfaces are near the
“neutral surfaces” along which particles can move and mix freely (McDougall,
1987). It is for this reason that the depths and water mass intrusions, traced with
the spicinass (1), were evaluated alorg these surfaces. The associated figures

show the divection from which the various intrusions advanced along the
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1sopyenal surfaces. The temperature and salinity values which correspond to
referenced spiciness values can be obtained by using Figure 18.

Spiciness values greater than 0.10 on the 26.4 surface clearly show the
intluence of equatorial (e.g.. undercurrent) water with salinities greater than
34.0%c. On this same surface. T values less than 0.02 were influenced by the
PSAW . Spiciness values less than -0.04 on the 20.8 surface are strongly

intluenced by the NPIW with temperatures less than 6.7°C.

a. The 26.4 g surface

The depth of the 26.4 vy surface in February. 1991 (Figure 19, top)
sloped evenly downward onshore throughout the region. The extremes range
trom 180 m depth on the northern outer slope to a lens 230 m deep on the central
inner slope. Similarly. the spiciness (Figure 19, bottbm) during this cruise was
uniformly moderate (0.03-0.10 ) relative to the other cruises indicating the
absence of the warm. salty CUC signal.

The upwelling and southward geostrophic flow was clearly evident
in the depth of the 26.4 ¥y surface for May (Figure 20, top). The depth of this
surface on the outer slope was as deep as 158 m and shoals on the shelf to 37 m.
This was also a period of low spiciness (-0.01 to 0.05 ), again indicating the
absence of the CUC waters (Figure 20, bottom). The low spiciness water mass
(0.02 m contour) intruding from offshore was likely PSAW. Equatorward flow
and the absence of the CUC permitted this water mass to enter into the region.

During the August cruise, the 26.4 vg surface was depressed in the
south and in the northeast corner (Figure 21, top). The position of the
northeastern depression suggests that it was tied to Point Reyes in some fashion.

perhaps by one of the cold filaments that is recurrent in this area. However. there

46



et v e el e e
-

< ° L ° e L] ° ® ® L] ]
¢ ’
. 345 :
r 10.0 »
1 Ye= 26.4 I A
9.0 - t34.3
g [
L
P2
‘ 2 80 - / 3412 ’
© =
[ - =
- PR
Ev.o% R 339
K -
1 |
¢ )
6.0 - 337
Temperalture
i — — Salinity "
5.0 T T T T T 33.5
015  -0.10  ~0.05 0.00 005 010 0.15
( Spiciness )
100 r34.5
1 7¢=26.8 r
¢ 50 ~ b3s3 ' q
8 o - - — = —_ -
—- - 2
3804~~~ L3412
£ .=
1 £ —— 3
o 7.0 7 -33.9
[
6.0 - L-33.7
Temperature
¢ A — — Salinity |
5.0 — T T i T 335
-015  -010  -0D05 0.00 005 0.10 015
Spiciness
# Figure 18.  Spiciness Conversion Chart. Temperature and salinity values
can be converted into spiciness values for use in evaluating
Figu:res 19-23 and 25. The top chart is for the 26.4 yy surface,
and the bottom figure is for the 26.8 yg surface.
47




madilinssin

Figure 19.

-7 -123 80
T T

FEBRUARY 18891
Depih of the 284
Gamma-Theta Surlace

North Latitude

Depth contoured in 10 meler increments

N n " '
- °-°lH: % 12326 -1z % ~1zp 28
¥West Longitude

-1 -1222 -1127%
T T T

FEBRUARY 1991
Bpicineys along the 264
Gemma-Thets purface ﬁ\

wr . Pt Reye

North Latitude

%0 L A 5. i
-nn -1 -t

West Longitude

The 24.6 Y Surface for February, 1991. The depth of the 24.6
Vg surface is shown in the top plot, with spiciness () below. The
annotated arrows(top) indicate the direction of flow along this
surface implied by the geostrophic balance.

48

& |

X .m

&




-inn -122
T T

MAY 1881
Depthi of Lthe 264
Gemma-Theta Burlace

K ‘l‘.

North latitude
A
/‘g 19
N

nw

Depth contoured in 10 meter incremente

I e b
s 12328 -~
West Longitude

-1 - a0 -2 %
T T T

MAY 1991
Bpiciness along the 26 4
Oamma-'iheta surface

o b .
- Pt Reye

ars

North Latilude
-
(-4
[-*
[

L -t S { n 1 280

nw
-inn -1 ~fun -en s

West Longitude

Figure 20.  The 26.4 Yy Surface for May, 1991. The depth of the 24.6 Yy
surface is shown in the top plot, with spiciness (1) below. The
annotated arrows (top) indicate the direction of flow along this
surface implied by the geostrophic balance.

49




-3 -ll:. ‘!
AUGUST 1991 )
Deplh of the 284
Gamma-Theta Burlace
4
.‘\}
v . . )
Eh) NN
3 245
5 Qj ! .
s ne . '
= N 3
]
Depth con‘lour:d in 10 meter increments
“u-‘IH'IG —II;I —I;" \-xm .
West Longitude
AUGUST teg1
e petebauriace © R ’
mer Pt Reye
N\ @
'§ . ) % oNle
3 e >
= . -
Enm . . . °>.f
. s < : ( -
! V% R
/3
-1 -lll-“el‘ mn‘ilud:-‘ ~1m.
»
The 26.4 yg Surface for August, 1991. The depth of the 24.6 yg
sutface is the top plot, with spiciness () below. The annotated
arrows (top) indicate the direction of flow along this surface
implied by the geostrophic balance.
»

50




was no corresponding spiciness signature or clear satellite imagery to fully
support this hypothesis (Figure 21, bottom). A broad high spiciness signature of
the CUC core flowing onshore over the slope from the south contrasts with the
low spiciness core of the PSAW from the north. As was discussed in the previous
section. there was a definite temperature-salinity front during this period, and this
figure shows its along-slope orientation as a gradient of 7, parallel to isobaths of
density anomaly. The May conditions were such that the PSAW signature
dominated the entire outer slope region; the movement of this water mass to the
northwest in August indicates the dominance of the CUC relative to the PSAW,
associated with poleward geostrophic flow.

Equatorial waters were found throughout the survey area in October/
November as indicated by the 0.14 © contour. The isopycnal surface was
correspondingly depressed throughout region, with the exception of some
shoaling in the southwest section (Figure 22, top), where there was a low
spiciness core intruding from the south (Figure 22, bottom). The geostrophic
flow is indicative of the complex nature of the CCS (see arrows annotated on
Figure 22, top). The reemergence of the 0.04 t contour of the PSAW to the south
was probably the result of the meandering of the CUC. ]

While downwelling and associated poleward geostrophic flow
clearly dominated the depth characteristics of the February, 1992 cruise (Figure
23, top), some of the sub-grid scale structure was artificially induced by the non-
synoptic method by which this February survey was conducted. The
southernmost line was surveyed on February 9th, followed three days later by the
northernmost line. A two day gap thus ensued before each of the two lines b and
¢ (Figure 2). The spiciness structure appears as a “pulse” of the CUC that seems

to be developing during this period (Figure 23, bottom). Surveying the northern
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line early in the study may have fortuitously captured the leading boundary of the
poleward flowing equatorial water, which later flooded the entire region. The
core of the equatorial water, as indicated by the 0.14 © contour, was further
offshore in February 1992 than in August 1991. In contrast to August, the CLC
appeared to be headed offshore during this time.

The interannual comparison between the two February cruises shows
different structures in both depth, horizontal pressure gradient and spiciness. The
26.4 g surface was 30 m deeper over the outer slope and 70 m deeper on the
inner slope in 1992 than in 1991, the increased slope associated with stronger
poleward geostrophic currents. There was uniform moderate spiciness
throughout the region in 1991 but higher spiciness (the equatorial water signal)

in 1992.

b. The 26.8 yg surface

There were several instances of inflections in the T-S curves which
prompted our investigation of the 26.8 yg surface. The main features of interest
were deep ocean eddies found during the last three cruises (Figures 24a and 24b).
The 26.7 Yg surfaces were also investigated in order to verify the persistence of
these eddies, where they were found to be equally energetic. While these eddies
seem to have little to do with the ENSO signal in the region, their existence was
notable. The cold, fresh NPIW intrusions into the area during the May and
August cruises were coming from the northwest and southwest, respectively
(Figure 25). The remainder of the surveys were generally unremarkable in the

spiciness regime.
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B. OTHER SUPPORTING DATA

The water mass analysis has shown that the anomalous conditions during
February. 1992 were due primarily to thermocline/halocline depression. rather
than by the invasion of non-local water masses. To determine if this depression
was due to atmospheric or oceanic processes, we investigate the time of these
events using coastal sea level data, current meter data, and maps of surface

atmospheric pressure.

1. Sea Level Analvsis

Monthly average sea level anomalies were taken from the Integrated
Global Ocean Services System (IGOSS) Sea Level Program in the Pacific.
(ISLP-Pac). These anomalies were calculated as deviations from the 1975-1986
mean annual cycle of sea level, and were corrected for the inverted barometer
effect using atmospheric pressure fields provided by the National Meteorological
Center (Figure 26).

The anomalies at Callao, Peru and the Gulf of Alaska both became
positive in October 1991 and had a nearly identical rise, reaching a maximum in
February. 1992. The stations along the California coast changed much later: at
San Francisco and Crescent City, anomalies were still near zero in January. 1992
but jumped rapidly to greater than 10 cm by February, 1992.

Since Kelvin waves could not travel from Callao to Alaska without
affecting the stations in between, an atmospheric teleconnection is suggested
between the equatorial Pacific and the Aleutian low, which impacts the Gulf of
Alaska. This process was investigated using surface atmospheric piessure charts

from the north Pacific.
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Figure 26.  IGOSS Monthly Mean Sea Level Anomalies, 1991-1992. The

graph shows that the stations at Callao (12°S) and the Gulf of
Alaska (59.5°N) had nearly simultaneous rises in sea level,
leading California data by two or three months.
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2. Atmospheric Teleconnection

Emery and Hamilton (1985) identify three basic eastern Pacific
atmospheric patterns: (1) the climatological mean: (2) an “intense” Aleutian low :
and (3) weak North Pacific circulation causing a weak Aleutian low that is shitted
to the west, associated with the reemergence of the North Pacific high from the
southeast. They show the seasonal mean atmospheric patterns for the winter
season from 1947 to 1982, and several have been chosen to illustrate the three
basic patterns (Figure 27).

The chimatological mean pattern 1§ best typified by the winters of 1943
and 1979. the weak circulation pattern by 1972 and 1982. and the intensified
Aleutian low pattern by 1958 and 1977 (Emery and Hamilton, 1985). The
intensified Aleutian low is associated with anomalously strong southwesterly
winds. which cause an onshore Ekman transport and downwelling along the
coast. This causes positive coastal SST and sea level anomalies. and a deeper
than usual pycnocline.

The conditions for 1991-1992 were compared with the Emery and
I1amilton “mean states” using the monthly mean atmospheric sea level pressure
(SLP) charts extracted from the Climate Diagnostics Bulletin (U.S. Department
of Commerce, NOAA/NWS/NMC). The monthly mean atmospheric pattern for
October 1991 (Figure 28, top) indicated a two-cell Aleutian system that was
anomalously low in the central Pacific region. In November, the two-cell system
migrated north, unified, spread and intensified (Figure 28, center). This
intensified low was as much as 7 mb below the historical mean. based on the
mean monthly patterns from August 1982 through July 1988. The North Pacific
high appeared aiong the California coastal region and was ceatered north of the

study area. By December, 1991, the North Pacific high had been forced to the
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southwest, covering much of the tropical central Pacific basin (Figure 28.
bottom). The Aleutian low continued to dominate the mid-latitudes and spread
into the northwestern United States.

In January, 1992, the Aleutian low became more intense, but the winds
off central California remained upwelling favorable due to a persistent small high
located near 30°N, 124°W (Figure 29, top). In February, 1992, the Aleutian low
again resembled the two-cell system observed in October. 1991 (Figure 29,
center); however, the low intensification was stronger, and in the eastern cell.
produced eastern Pacific anomalies 10 mb below the historical mean, based on
the mean monthly patterns from August 1982 through July 1988 (Figure 29,
bottom). This low engulfed the whole coast, causing onshore transport/
downwelling conditions everywhere.

Based on this analysis, we conclude that the peak in sea level anomaly
in February 1992 was likely forced by local onshore transport by the wind stress.
Possible oceanic influence are investigated using the current meter data. which

follows.

3. Current Meter Data

Current meter moorings were deployed in the Farallones region to
collect an interannual time series of temperature and salinity data at a variety of
depths (Table 4). This data was used to determine the inter-cruise characteristics
of the region, the timing of the arrival of the El Nifio signal. and the location of
the strongest signal.

Time series of temperature and salinity were examined from the
moorings in order to discern inter-cruise trends. Moorings B and F on the inner
slope (Figure 2) were the only ones that showed the anomalous warming and

freshening trends observed during February 1992. This agrees with the anomaly
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Figure 29,
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Sea Level Pressure, January-February 1992. The top panel
clearly shows he broad, intense Aleutian low dominating the
entire Pacific basin. The middle panel shows the reemergence of
a two-cell Aleatian low, while the bottom panel shows tae highly
anomalous February, 1992 conditions.
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plots that show the signal trapped close to shore. The time series of temperature
at 390 m at mooring B and 223 m, 324 m, and 456 m at mooring F indicate an
upward (warmer) trend beginning as early as January 1 at 456 m depth (Figure
30). The warming rend leads slightly at the deepest station suggesting that the El
Nifio signal was primarily a sub-surface manifestation (e.g., Rienecker and
Mooers, 1985; Cole and McLain, 1989; Huyer et al., 1991). The timing
between moorings B and F can not be distinguished due to mesoscale noise. The
timing and structure of the salinity time series follows the same pattern as that of
the temperature time series, showing a freshening trend in early January at 223
m depth (Figure 31). This early trend is not apparent in the SLP or coastal sea

level data, and may indicate an oceanic teleconnection.
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IV. COMPARISON WITH THE 1982-1983 EL NINO EVENT

A thorough account of the 1982-1983 El Nifio for the region (approximately
35-40°N and offshore to 127°W) near the Farallon Islands was presented by
Rienecker and Mooers (1985). They showed that the largest anomalies were in
the subsurface regime, thermocline depression was the cause of the positive
temperature ariomalies, and that PSAW intruded into the region sometime during
the study. The greater intrusion of PSAW would be expected since their study
region extended further north and offshore than our own. Further, there was
anomalous intensification of the Aleutian low as described by Emery and
Hamilton, (1985). and they also acknowledge that the warming trend occurred
prior to the atmospheric forcing. suggesting an oceanic compliment to the
atmospheric forcing.

Rienecker and Mooers, however, ascribe the Kelvin wave signal to
southern origin based on hindcast analysis of equatorial sea level variations
conducted by Busalacchi and Cane (1985). They further atiribute an off- and
on-shore migration of anomalies to shedding first and second mode Rossby
waves, because the wave speeds can be approximated in a “gross” sense by the
rate of anomaly migration. We do not observe this, possibly because of either the
small size of the Farallones study region or that the phenomenon occurred later
in 1992 than our February time frame. Due to the timing of this work, the
temporal development of the entire 1991-1992 El Nifio was not observed. Still
greater anomalies and offshore “leakage” may have occurred later in the year.
Rienecker and Mooers found significant sea level anomalics from southern

California to the Gulf of Alaska, but characterized their properties as a near
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stmultaneous rise along the entire coast. This is the biggest difference from our
study, where sea level anomalies originated simultaneously in both the north and
south, and spread from both ends to the central California coast. The 1991-1992
El Nifio had many similarities with the 1982-1983 El Niiio, regardless of the
proposed driving mechanisms.

Another study whose results approximate our own, but is south of the
Farallones region (along CalCOFI line 90, 240°T starting at 33°25'N,
117°54.3’W). and extends further offshore (nearly 300 km versus our 78 km) is
presented in Simpson, 1954a and 1984b. Simpson’s “simple model” supported
atmospheric teleconnection through the expansion and intensification of the
Aleutian low and the decrease in strength of the North Pacific high as the
mechanism by which onshore transport and isopycnal depression occurred off
southern California during the 1982-1983 event. He emphasized a resonated
seasonal response during El Nifio, versus an actual change in the hydrographic
structure (an observation also supported by Huver and Smith, 1985).

In Simpson, 19844, an argument is made that the fresh anomalies found in
the 1982-1983 data were only possible through the onshore transport of PSAW.
While this signal is present, and may be quite strong in the far offshore domain.
it does not sufficiently account for the anomalies that were found in the coastal
region of the Farallones study.

Part of the impetus for Simpson’s conciusion was the decrease or abatement
of coastal upwelling conditions during the 1982-1983 El Nifo event. The
Farallones data for February, 1992 also indicate downwelling favorable
conditions which contributed to the depression of the thermocline/halocline.

Later howaver, once the thermocline/halocline is depressed, upwelling will bring
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warmer and fresher water than usual to the surface, consistent with the El Nifio
signal, so the conditional requirement of upwelling abatement is a weak one.

Huver and Smith (1985) conducted a study of similar scope as Rienecker
and Mooers (1985), but off of the Oregon coast (approximately 42°-49°N and
offshore to 270 km). They too found the El Nifio signal to be oceanically
initiated, with atmospheric enhancement occurring 2-3 months later. The
difference in timing is possibly due to their being further north (see timing of
Crescent City sea level anomaly versus San Francisco in our Figure 26). They
ascribe the oceanic data to coastal Kelvin waves and the atmospheric path to
deepening and broadening of the Aleutian low.

Huyer and Smith also found the El Nifio event to be an enhancement of the
seasonal cycle, manifested in repetition of temperature maxima and persistence
of poleward flow, high sea level and high temperature. Their data did not show
any daily anomalies greater than the seasonal norm, the data had to be averaged
over a month or more for any significant anomaly to be detected. They attributed
the warm signal to the enhanced poleward flow of the warmer southern waters.
and the salinity minimum to a combination of relaxed upwelling in the summer
months, and increased rainfall and equatorward wind stress (downwelling
favorable) in the fall and winter months.

In general, the Huyer and Smith results agree with our own. They found the
initiation of the event to be in an oceanic pathway, and the atmospheric
contribution to be significant. Their results did indicate a weaker El Niiio signal
off of Oregon in 1982-1983 than we found in the Farallones region in 1991-1992,
however, this may be attributed to the “event scale weather” that dominated the

Oregon coast during the 1982-1983 study period.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. THE EL NINO MECHANISMS SUPPORTED BY THIS DATA

After completion of the water mass analysis, and additional confirmation
from other supporting data, the evidence suggests that vertical processes were the
primary driving mechanism for the 1991-1992 El Nifio event in the Farallon
Islands region. Systematically, the five basic El Nifo propagation theories were
tested on this interannual, fine-scale gridded data set, with the following
summary of results:

(1) The single station anomalies showed a positive teinperature anomaly. and
corresponding negative salinity anomaly. This suggests that the there was not
simply an enhanced poleward advection of warmer water of equatorial origin. as
this would produce a positive salinity anvmaly.

(2) The vertical sections indicated the strongest warm, fresh anomalies
below the mixed layer. This suggests that an altered Northeast Pacific heat
budget was not the driving factor in this ENSO event. Additional evidence can
be found in the SLP charts, which do not indicate the high/low inversion
necessary for the occurrence of this phenomenon.

(3) The T-S analysis showed the absence of any large shifts in the shapes of
the curves consistent with a massive intrusion of an alien watermass. especially
between October/November 1991 and February, 1992. The small scale intrusions
of PSAW along the 26.4 Yg surface, and NPIW along the 26.8 Yg surface are
inconsistent with the warm, fresh anomalies associated with the El Niiio and are
of insufficient magnitude to cause the signals observed in the February 1992 data

set. This refutes the idea that the anomalous onshore transport of different water
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masses caused the warm fresh anomaly. at least close to shore, This may cause
anomalies farther offshore (Simpson 1984a, 1984D).

() Thermochine/halocline depression via the coastally-trapped internal
Kelvin wave may have caused the in-situ warming which began about 1 January .
1992, 1n the current meter records. If so, it was strongly coastally trapped and not
observed at the other mstruments. Further correlations between wind. current,
and acaicvel will be necessary to test this hypothesis.

Thermochne/halochne  depression  via atmospheric  teleconnection  1s
presently the only demonstrated mechanism by which the 1991-1992 El Nino
signal propagated into the Farallon Islands region. The theory 1s supported by the
subsurface manitestanion of the anomalies (Figures 8. 14,30 and 31: Table 6). the
vertical processes shown in the T-S curves (Figurc 17) and the depth plots of the
20.4 vy surtace (Figure 23). The southward propagation of SLP anomalies wis
Jdetected in the SLP plots. The comparison of atmospheric patterns consistent
with ENSO events (Figures 27 (bottom) and 28) with the 1991-1992 SLP maps

showing that climatologically typical atmospheric conditions prevailed.

B. RECOMMENDATIONS

While the work presented here is complete in its water mass analysis. there
are phenomena as of yet unexplained. The atmosphenc teleconnection theory
accounts for most of the anomalies in the data set, but does not explain the iming
of the signal seen in current meter mooring F. The SLP charts support a February
1992 warming event, however the arrival of the temperature and salinity signal
as early as 1 January, 1992 suggests that there may be an oceanic signal
preceding the atmospheric signal. A more robust analysis of the sea level
propagation needs to be done, including coherence and phase, to see if the phase

speeds are consistent with coastally-trapped internal Kelvin wave theory.
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The statistical analysis done in section 1HLLA.1.a. Single Station Anomalics.
1s robust, but not as precise as possible. Our measure of significance was based
solely on the standard deviation from the 20-year historical mean. A more precise
statistical technique (Wolf, 1962) uses the variances of both the historical and
Farallones data to test the hypothesis that the two means are equal or greater to

eacli other. at i given contidence intzrval. The formula (Wolf. 19602) is

[ 2 2
— - j0,, O, :
"

where the X" variables represent the Farallones data. the Y™ variables
represent the historical data. and 1 and m1 are the number of data points that were
used to calculate the two variances. The coefficient is weighted according to the
desired confidence interval using the statistics for a normally distributed random
variable. The factor 1.65 results in a 95% confidence interval. The results
obtained here should be re-examined using this more precise technique to
determine a quantitative measure of when the Farallones data were significantly
different from the historical mean.

The passing of several major synoptic systems may have biased the
atmospheric monthly mean SLP charts, especially in February. 1992 (personal
communication, Dr. Tom Murphree, Department of Meteorology, U.S. Naval
Postgraduate Schooi, Monterey, CA). Detailed research may be required to
determine if the February, 1992 SLP chart is biased in such a manner, and if the
method proposed by Emery and Hamilton (1985) takes this possible biasing
into account. It is our opinion, though, that since the SLP is averaged over the

entire month, and that it is the same method used by Emery and Hamilton



(/985 ). the results are sufficiently conclusive to support thermocline/haloching
depression via atmospheric teleconnection as one mechanism by which the 1991 -

1092 El Ninto event propagated into the Farallon Islands region.
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